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Large-scale data sets 
Application teams are beginning to generate 10s of Tbytes of data in a single 
simulation. For example, a recent GTC run on 29K processors on the XT4 
generated over 54 Tbytes of data in a 24 hour period [1]. 
Similarly, the FLASH team running at 16-32K cores on BG/P is generating 74 Gbyte 
checkpoints every 3 hours and 16 Gbyte plotfiles every 10-15 minutes [2].  

PI
 Project
 On-Line Data
Off-Line Data

Lamb, Don FLASH: Buoyancy-Driven Turbulent Nuclear Burning 75TB 300TB 
Fischer, Paul Reactor Core Hydrodynamics 2TB 5TB 
Dean, David Computational Nuclear Structure 4TB 40TB 
Baker, David Computational Protein Structure 1TB 2TB 
Worley, Patrick H. Performance Evaluation and Analysis 1TB 1TB 
Wolverton, Christopher Kinetics and Thermodynamics of Metal and 

Complex Hydride Nanoparticles 
5TB 100TB 

Washington, Warren Climate Science 10TB 345TB 
Tsigelny, Igor Parkinson's Disease 2.5TB 50TB 
Tang, William Plasma Microturbulence 2TB 10TB 
Sugar, Robert Lattice QCD 1TB 44TB 
Siegel, Andrew Thermal Striping in Sodium Cooled Reactors 4TB 8TB 
Roux, Benoit Gating Mechanisms of Membrane Proteins 10TB 10TB 

Data requirements for select 2008 INCITE applications at ALCF


[1] S. Klasky, personal correspondence, June 19, 2008. 
[2] K. Riley, personal correspondence, July 15, 2008.  

2 



Argonne National 
Laboratory 

Blue Gene/P parallel storage system 

Architectural diagram of 557 TF Argonne Leadership Computing Facility Blue Gene/P I/O system. 
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Commodity 
network primarily 
carries storage traffic


900+ port 10 Gigabit 
Ethernet Myricom switch 
complex


Enterprise storage 
controllers and large racks 
of disks connected via 
InfiniBand or Fibre 
Channel

17 DataDirect S2A9900 
controller pairs with 480�
1 Tbyte drives and 8 
InfiniBand ports per pair


Storage nodes run 
parallel file system 
software and manage 
incoming FS traffic 
from gateway nodes

136 two dual core 
Opteron servers with 8 
Gbytes of RAM each


Gateway nodes run 
parallel file system client 
software and forward I/O 
operations from HPC 
clients 

640 Quad core PowerPC 
450 nodes with 4 Gbytes of 
RAM each


Ethernet�
10 Gbit/sec


InfiniBand�
16 Gbit/sec


BG/P Tree�
5.1 Gbyte/sec


Serial ATA�
3.0 Gbit/sec


HW bottleneck is 
here. Controllers 
can manage only�
4.6 Gbyte/sec.

Peak I/O system 
bandwidth  is �
78.2 Gbyte/sec.
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Analyzing large-scale data sets 

Where should data analysis be performed? Options include: using a 
separate analysis resource (e.g. cluster), using the large-scale 
compute system itself, or (possibly) using advanced functionality within 
the storage system. 

Should we process the data first? With knowledge of the underlying 
I/O system, access patterns, and data organization, data can be stored 
to make reading “easier” for the storage system. 

Can the amount of I/O be reduced? Certain algorithms can 
incorporate techniques for reducing I/O (e.g. early ray termination in 
volume rendering). Alternatively, we could perform some analysis while 
data is still in memory. 
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Rendering of 11203 astrophysics time 
step from the VH-1 hydrodynamics code 
was performed on the ALCF Blue Gene/P 
system, generating a 16002 image. 
Looking at the time spent in analysis, 
rendering time is significant, but I/O time 
clearly dominates. 
Thanks to J. Blondin (NCSU) and A. 
Mezzacappa (ORNL) for providing the 
sample data set. 

Visual data analysis on leadership systems 
As data sizes grow, I/O access begins to dominate run 
time, and the value of special-purpose processors such 
as GPUs is diminished. In these cases, it might make 
more sense to perform analysis on leadership systems, 
rather than making the significant investment in 
networking infrastructure necessary to enable high 
performance I/O to a separate “visualization cluster”. 
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Peterka, T., Yu, H., Ross, R., Ma, K.-L., “Parallel volume rendering on the IBM Blue Gene/P”, Proc. of EGPGV’08, April 2008.  
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Understanding data organization 
When data is stored during a simulation, analysis is 
rarely taken into consideration. Data might be stored in 
a file per process, or in one large file with interleaved 
variables. When analysis is finally performed, the 
resulting I/O accesses may not be optimal. If we are 
going to analyze the data repeatedly, it may make 
sense to reorganize the data before we begin analysis.  

The astrophysics data described previously is stored as a 
netCDF data set with 5 large 3D variables. The netCDF 
software interleaves 2D slices of variables in the file. 

1152x1152x4 bytes


In the netCDF file, a small header (first red block) results in 
these slices being stored at a slight offset relative to their 
width. The long red regions represent slices of a single 
variable. 

To generate an image using a single variable, only the 
header and every fifth slice needed. Reading these 
directly from the output data set doubles the I/O time.  

2D slice of pressure variable

(1152x1152x4 bytes)
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Reducing data access 
Visual analysis techniques can often avoid reading data by 
determining either a priori, or at run time, that certain regions will 
not be visible in the resulting image. This can significantly reduce 
the amount of data accessed, but it may limit the degree to which 
regions may be processed in parallel. 

The Visible Human Project. http://www.nlm.nih.gov/research/visible/ 

Y. Hong and H.-W. Shen have been working with one of the Visible 
Human datasets from the National Library of Medicine. The magnetic 
resonance data is 512x512x1728 with single 12-bit value at each point 
(stored in two bytes). Data is partitioned into 163 voxels (110,592 total). 

When run time methods are 
used to reduce data access, 
only a fraction of the total data 
set must be read. The graph 
shows the number of invisible 
blocks for a set of views rotated 
around the Y axis. The troughs 
represent “head on” and “back 
on” views, where more surface 
is visible. 
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Access patterns during volume rendering 

This image shows a 2D row-major 
representation of data blocks from 
the Visible Human dataset as stored 
on one server. Volume rendering 
was performed on this dataset using 
an out-of-core algorithm that only 
reads visible data blocks. Only the 
red blocks were accessed. 

Y. Hong and H.-W. Shen, “Histogram-based visibility culling in visualizing 
large volume data”, OSU Technical Report OSU-CISRC-7/08-TR38, 2008. 

When this type of optimization is 
applied, data accesses often 
appear random to the storage 
system. While much less data is 
accessed, optimizations such as 
read-ahead within the file 
system might be disabled due to 
the irregularity of incoming 
reads. Further, the underlying 
hard drives are likely to spend 
significant time seeking from 
one region to another. 
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Organizing data sets for efficient access 
A visibility feature vector is an n-dimensional tuple that serves a measure of the 
visibility of a block from a variety of view directions, independent of transfer function. 
By calculating these vectors for each block of a data set, visibility of a given block can 
be determined with a high degree of accuracy, without re-reading the blocks. We can 
further use these vectors to cluster blocks with similar access characteristics into 
adjacent regions in the file. 

9 

Comparison of access times with 
original file layout and visibility-
based layout from a variety of 
view directions using a fixed 
transfer function.  

Data gathered on IBM BG/L at ANL 
using 64 compute nodes, 16 server 
PVFS. 
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Access pattern for visibility-based layout 
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Accesses for a typical 
viewpoint and transfer 
function fall into less than 
50% of the blocks stored on 
a single server. 

Data gathered on IBM BG/L at 
ANL using 64 compute nodes, 
16 server PVFS. 
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In situ analysis and data reduction 
In situ analysis incorporates analysis routines into the simulation code. This 
technique allows analysis routines to operate on data while it is still in memory, 
potentially significantly reducing the I/O demands. 

One way to take advantage of in situ techniques is to perform initial analysis for the 
purposes of data reduction. With help from the application scientist to identify 
features of interest, we can compress data of less interest to the scientist, reducing  
I/O demands during simulation and further analysis steps. 

The feature of interest in this case is 
the mixture fraction with an iso value of 
0.2 (white surface). Colored regions 
are a volume rendering of the HO2 
variable (data courtesy J. Chen (SNL)). 

By compressing data more 
aggressively the further it is from this 
surface, we can attain a compression 
ratio of 20-30x while still retaining full 
fidelity in the vicinity of the surface.  
C. Wang, H. Yu, and K.-L. Ma, “Application-driven compression for visualizing large-scale time-varying volume data”, 
IEEE Computer Graphics and Applications, accepted for publication. 
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